Sharp MSE Bounds for Proximal Denoising

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp MSE Bounds for Proximal Denoising

Denoising has to do with estimating a signal x0 from its noisy observations y = x0 + z. In this paper,we focus on the “structured denoising problem”, where the signal x0 possesses a certain structure and zhas independent normally distributed entries with mean zero and variance σ. We employ a structure-inducing convex function f(·) and solveminx{ 12‖y − x‖ 22 + σλf(x)...

متن کامل

Bounds for the MSE Performance of ConstantModulus

The constant modulus (CM) criterion has become popular in the design of blind linear estimators of sub-Gaussian i.i.d. processes transmitted through unknown linear channels in the presence of unknown additive interference. In this paper, we present an upper bound for the conditionally unbiased mean-squared error (UMSE) of CM-minimizing estimators that depends only on the source kurtoses and the...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Sharp bounds for harmonic numbers

In the paper, we collect some inequalities and establish a sharp double inequality for bounding the n-th harmonic number.

متن کامل

Sharp bounds for population recovery

The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12, DRWY12, MS13, BIMP13, LZ15, DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2015

ISSN: 1615-3375,1615-3383

DOI: 10.1007/s10208-015-9278-4